Tissue Engineering and Regenerative Medicines

Tissue engineering is a relatively new and emerging branch of biotechnology. The development of advanced techniques in bioprinting and microfluidics now allow formation of autologous tissue grafts for various purposes such as organ transplantation, treating burns and regenerative medicine. Furthemore, tissue engineering provides alternatives to surgical reconstruction, transplants and other medical devices that are used to repair damaged tissues.

Previously, tissue engineering was only limited to biomedical applications, plant  tissue cultures, but now these days some companies have also started to engineer  tissues on a small scale as an alternative to direct animal products such as  laboratory meat and laboratory leather etc. However, this area is still in development  and it needs to first reach a larger scale for products to be competitive in price with  directly obtained animal based products.

Tissue engineering can be done by four types of biomaterials namely polymers,  ceramics, metals and composites (blend of above three). The source of these  materials can either be synthetic or natural.

The fusion of cells to biomaterials is called a ‘construct’ and is the foundation of  current tissue engineering. Construct-based conventional tissue engineering  platforms are required because :- 

1) Cells need a solid base to grow and proliferate. 

2) Tissues need a solid scaffold to keep desired shape. 

3) The rigid and porous  scaffold also serves as an inductive and instructive guide that signals for cell  differentiation, migration and orientation in a specific manner.

4) The porous  structure of a solid scaffold will allow cell seeding and vascularisation. 

5) The initial  solid and porous scaffold will later get replaced by natural structures through  morphogenesis of parenchymal and stromal cells, inside and outside of the tissue  construct.

The global market size for tissue engineering and regenerative medicine was  estimated at 9.5 billion USD in 2019 alone and is expected to witness a compound  annual growth rate of 18.5% between 2020 to 2027.

Comments

Popular posts from this blog

Environmental Biotechnology

Animal biotechnology

Biochemical Engineering